1. Name the following esters:

a) HCOOCH₃

b) CH₃COOCH₂CH₂CH₃

c) CH₃CH₂C\(\text{O}\)\(\text{O-CH}_3\)

d) HC\(\text{O}\)\(\text{O-CH}_2\text{CH}_2\text{CH}_3\)

2. Draw the structures for the following esters, using a format like that in Q1 parts (c) and (d).

a) methyl ethanoate

b) propyl butanoate

c) ethyl 2-methylpropanoate

3. The reaction between ethanoic acid and ethanol in the presence of concentrated sulphuric acid is given by the equation:
 \[\text{CH}_3\text{COOH} + \text{CH}_3\text{CH}_2\text{OH} \xrightleftharpoons{\text{Chief}} \text{CH}_3\text{COOCH}_2\text{CH}_3 + \text{H}_2\text{O} \]

 a) Given that the reaction is reversible, how would you get the greatest possible conversion of acid and alcohol into the ester for a given reaction mixture? Explain why your method works.

 b) Bigger esters are produced more slowly. How would you change the method if you were trying to make one of these?