This page looks at ways of swapping the -OH group in the -COOH group of a carboxylic acid for a chlorine atom. This produces useful compounds called acyl chlorides (acid chlorides).

It covers the use of phosphorus(V) chloride and phosphorus(III) chloride as well as sulphur dichloride oxide (thionyl chloride).

Replacing -OH by -Cl


We are going to be looking at converting a carboxylic acid, RCOOH, into an acyl chloride, RCOCl. Acyl chlorides are also known as acid chlorides.

By far the most commonly used example of the conversion of a carboxylic acid into an acyl chloride is ethanoic acid to ethanoyl chloride.

Acyl chlorides are very reactive, and can be used to make a wide range of other things. That's why they are important.

Note:  If you are want to find out more about acyl chlorides, you can explore the acyl chlorides menu by following this link.

Use the BACK button on your browser to return to this page.

Replacing the -OH group using phosphorus(V) chloride, PCl5

Phosphorus(V) chloride is a solid which reacts with carboxylic acids in the cold to give steamy acidic fumes of hydrogen chloride. It leaves a liquid mixture of the acyl chloride and a phosphorus compound, phosphorus trichloride oxide (phosphorus oxychloride) - POCl3.

The acyl chloride can be separated by fractional distillation.

For example:

Replacing the -OH group using phosphorus(III) chloride, PCl3

Phosphorus(III) chloride is a liquid at room temperature. Its reaction with a carboxylic acid is less dramatic than that of phosphorus(V) chloride because there is no hydrogen chloride produced.

You end up with a mixture of the acyl chloride and phosphoric(III) acid (old names: phosphorous acid or orthophosphorous acid), H3PO3.

For example:

Again, the ethanoyl chloride can be separated by fractional distillation.

Replacing the -OH group using sulphur dichloride oxide (thionyl chloride)

Sulphur dichloride oxide (thionyl chloride) is a liquid at room temperature and has the formula SOCl2.

Traditionally, the formula is written as shown, despite the fact that the modern name writes the chlorine before the oxygen (alphabetical order).

The sulphur dichloride oxide reacts with carboxylic acids to produce an acyl chloride, and sulphur dioxide and hydrogen chloride gases are given off.

For example:

The separation is simplified to an extent because the by-products are both gases. You would obviously still have to fractionally distil the mixture to separate the acyl chloride from any excess acid or sulphur dichloride oxide.

Questions to test your understanding

If this is the first set of questions you have done, please read the introductory page before you start. You will need to use the BACK BUTTON on your browser to come back here afterwards.

questions on converting carboxylic acids to acyl chlorides


Where would you like to go now?

To the carboxylic acids menu . . .

To the menu of other organic compounds . . .

To Main Menu . . .

© Jim Clark 2004 (modified November 2015)